Quelques exercices de calcul avec des nombres complexes

(document écrit par Jean-Pierre Bourdier, F6FQX, en décembre 2012)

La solution de chacun de ces exercices peut m'être demandée à f6fqx@orange.fr

Dans tous ces exercices, on adoptera la convention des électriciens qui appelle j la racine de (-1) dont l'argument est $\frac{\pi}{2} \pmod{.2\pi}$ et que les mathématiciens appellent i.

1/ exercice n°1:

On considère la fonction $f(z) = \frac{1+z}{1-z}$ qui, au nombre complexe z d'image M dans le plan complexe, associe le nombre Z complexe d'image P Sur quelle partie du plan complexe cette fonction et-elle définie ?

2/ exercice n°2:

On considère la fonction $f(z) = \frac{1+z}{1-z}$ qui, au nombre complexe z d'image M dans le plan complexe, associe le nombre \mathbf{Z} complexe d'image P En posant $z = x + j \cdot y$ (expression où x et y sont réels), calculer la partie réelle et la partie imaginaire de $f(z) = \frac{1+z}{1-z}$ En déduire où doit se situer le point M pour que le point P soit sur l'axe réel.

3/ exercice n°3:

On considère la fonction
$$f(z) = \frac{1+z}{1-z}$$
 dans laquelle $z = \rho \cdot e^{j \cdot \theta} = \rho \cdot \cos \theta + j \cdot \sin \theta$ avec

$\rho \in \mathbb{R}^+$ et $\theta \in \mathbb{R}$

Pour quelles valeurs de $\boldsymbol{\rho}$ et de $\boldsymbol{\theta}$ cette fonction est-elle définie ?

4/ exercice n°4:

On considère la fonction $f(z) = \frac{1+z}{1-z}$ dans laquelle $z = \rho \cdot e^{j \cdot \theta} = \rho \cdot \cos \theta + j \cdot \sin \theta$ avec

 $\rho \in \mathbb{R}^+$ et $\theta \in \mathbb{R}$ qui, au nombre complexe z d'image M dans le plan complexe, associe le nombre Z complexe d'image P.

On suppose ρ et θ variant de $-\infty$ à $+\infty$; on pose $g(\theta) = f(z)$; montrer que $g(\theta)$ est périodique et en donner la période.

5/ exercice n°5:

On considère la fonction
$$f(z) = \frac{1+z}{1-z}$$
 dans laquelle $z = \rho \cdot e^{j \cdot \theta} = \rho \cdot \cos \theta + j \cdot \sin \theta$ avec

 $\rho \in \mathbb{R}^+$ et $\theta \in \mathbb{R}$ qui, au nombre complexe z d'image M dans le plan complexe, associe le nombre Z complexe d'image P. On suppose ρ et θ variant de $-\infty$ à $+\infty$; on pose

 $g(\theta) = f(z)$; pour 2 valeurs de θ le point P, image de Z est sur l'axe réel; quelles sont ces 2 valeurs de θ et quelles sont les points P correspondants?

6/ exercice $n^{\circ}6$:

Soient trois nombres complexes z, z_1 , z_2 . Soient M, M_1 , M_2 leurs images dans le plan complexe. Soient $\mathbf{Z}_1 = z - z_1$ et $\mathbf{Z}_2 = z - z_2$: montrer que pour que les vecteurs \overrightarrow{MM}_1 et \overrightarrow{MM}_2 soient perpendiculaires, il faut et il suffit que le nombre complexe $\mathbf{Z} = \frac{z - z_1}{z - z_2}$ soit un nombre imaginaire pur (c'est-à-dire que son image appartienne à l'axe imaginaire).

7/ exercice $n^{\circ}7$:

Soient trois nombres complexes z, z_1 , z_2 . Soient M, M_1 , M_2 leurs images dans le plan complexe. Soient $\mathbf{Z}_1 = z - z_1$ et $\mathbf{Z}_2 = z - z_2$; on suppose en outre que le nombre complexe $\mathbf{Z} = \frac{z - z_1}{z - z_2}$ est un nombre imaginaire pur (c'est-à-dire que son image appartienne à l'axe imaginaire). Si M_1 et M_2 sont fixes, à quelle courbe appartient le point P quand z varie?

8/ exercice n°8:

Soit la fonction $v(x) = A e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}$ dans laquelle $A \in \mathbb{R}$, $B \in \mathbb{R}$,

9/ exercice n°9:

10/ exercice n°10:

Soit la fonction $i(x) = A.e^{j.\beta.x} - B.e^{-j.\beta.x}$ dans laquelle $A \in \mathbb{R}$, $B \in \mathbb{R}$

11/ exercice n°11:

Soit la fonction $i(x) = A.e^{j.\beta.x} - B.e^{-j.\beta.x}$ dans laquelle $A \in \mathbb{R}$, $B \in \mathbb{R}$, $\beta \in \mathbb{R}$, $x \in \mathbb{R}$. Cette fonction est donc une application de \mathbb{R} dans \mathbb{C} . Pour 2 valeurs de $x \pmod{.2\pi}$ elle prend une valeur réelle. Lesquelles ? Quelles sont les valeurs de v(x) correspondantes ?

12/ exercice n°12:

Soit la fonction $v(x) = A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}$ dans laquelle $A \in \mathbb{R}$, $B \in \mathbb{R}$

Cette Calculer |v(x)|, le module de v(x), appelé dans la suite V(x) = |v(x)| (indication : utiliser le fait que $V(x) = |v(x)| = \sqrt{v(x).\overline{v(x)}}$). En déduire que est une fonction périodique, et en donner la période suivant les valeurs de A et B.

13/ exercice $n^{\circ}13$::

Soit la fonction $i(x) = A.e^{j.\beta.x} - B.e^{-j.\beta.x}$ dans laquelle $A \in \mathbb{R}$, $B \in \mathbb{R}$, $B \in \mathbb{R}$, $A \in \mathbb{R}$, $B \in \mathbb{R}$, $A \in \mathbb{R}$

Calculer |i(x)|, le module de i(x), appelé dans la suite I(x) = |i(x)| (indication : utiliser le fait que $I(x) = |i(x)| = \sqrt{i(x)\overline{i(x)}}$). En déduire que est une fonction périodique, et en donner la période suivant les valeurs de A et B.

14/ exercice n°14:

Soit la fonction
$$v(x) = A e^{j \cdot \beta \cdot x} + B e^{-j \cdot \beta \cdot x}$$
 dans laquelle $A = 4$, $B = 2$, $\beta = 1$, $x \in \left[0, \frac{2\pi}{\beta}\right]$.

Calculer |v(x)|, le module de v(x), appelé dans la suite V(x) = |v(x)| (indication : utiliser le fait que $V(x) = |v(x)| = \sqrt{v(x).\overline{v(x)}}$). Tracer la courbe représentative de V(x) = |v(x)| en fonction de x

15/ exercice $n^{\circ}15$:

Soit la fonction
$$i(x) = A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}$$
 dans laquelle $A = 4$, $B = 2$, $\beta = 1$, $x \in \left[0, \frac{2\pi}{\beta}\right]$.

Calculer |i(x)|, le module de i(x), appelé dans la suite I(x) = |i(x)| (indication : utiliser le fait que $I(x) = |i(x)| = \sqrt{i(x).\overline{i(x)}}$). Tracer la courbe représentative de I(x) = |i(x)| en fonction de x

16/ exercice n°16:

Soient les fonctions $v(x) = A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}$ et $i(x) = A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}$ dans lesquelles

$$A = 4$$
, $B = 2$, $\beta = 1$, $x \in \left[0, \frac{2\pi}{\beta}\right]$.

Soit |v(x)|, le module de v(x), appelé dans la suite V(x) = |v(x)|

Soit |i(x)|, le module de i(x), appelé dans la suite I(x) = |i(x)|

Tracer sur le même graphique les courbes représentatives de I(x) = |i(x)| et de V(x) = |v(x)| en fonction de x

17/ exercice n°17:

Soient les fonctions $v(x) = A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}$ et $i(x) = A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}$ dans lesquelles A = 4, B = 2, $\beta = 1$, $x \in \left[0, \frac{2\pi}{R}\right]$.

Soit la fonction
$$z(x) = \frac{v(x)}{i(x)} = \frac{A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}}{A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}} = \frac{1 + \frac{B}{A} \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}{1 - \frac{B}{A} \cdot e^{-j \cdot 2 \cdot \beta \cdot x}} = \frac{1 + \rho \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}{1 - \rho \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}$$

Montrer que cette fonction est périodique, et en donner la période.

18/ exercice $n^{\circ}18$:

Soient les fonctions $v(x) = A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}$ et $i(x) = A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}$ dans lesquelles

$$A = 4$$
, $B = 2$, $\beta = 1$, $x \in \left[0, \frac{2\pi}{\beta}\right]$.

Soit la fonction
$$z(x) = \frac{v(x)}{i(x)} = \frac{A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}}{A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}} = \frac{1 + \frac{B}{A} \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}{1 - \frac{B}{A} \cdot e^{-j \cdot 2 \cdot \beta \cdot x}} = \frac{1 + \rho \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}{1 - \rho \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}$$

Quelles sont les valeurs de x pour lesquelles cette fonction prend des valeurs réelles ? Quelles sont alors ces valeurs ?

19/ exercice n°19:

Soient les fonctions $v(x) = A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}$ et $i(x) = A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}$ dans lesquelles

$$A = 4$$
, $B = 2$, $\beta = 1$, $x \in \left[0, \frac{2\pi}{\beta}\right]$.

Soit la fonction
$$z(x) = \frac{v(x)}{i(x)} = \frac{A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}}{A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}} = \frac{1 + \frac{B}{A} \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}{1 - \frac{B}{A} \cdot e^{-j \cdot 2 \cdot \beta \cdot x}} = \frac{1 + \rho \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}{1 - \rho \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}$$

Montrer que l'image P de z(x) décrit un cercle dans le plan complexe. Quel en est le centre et quel en est le rayon ?

20/ exercice $n^{\circ}20$:

Soient les fonctions $v(x) = A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}$ et $i(x) = A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}$ dans lesquelles

$$A = 4$$
, $B = 2$, $\beta = 1$, $x \in \left[0, \frac{2\pi}{\beta}\right]$.

Soit la fonction
$$z(x) = \frac{v(x)}{i(x)} = \frac{A \cdot e^{j \cdot \beta \cdot x} + B \cdot e^{-j \cdot \beta \cdot x}}{A \cdot e^{j \cdot \beta \cdot x} - B \cdot e^{-j \cdot \beta \cdot x}} = \frac{1 + \frac{B}{A} \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}{1 - \frac{B}{A} \cdot e^{-j \cdot 2 \cdot \beta \cdot x}} = \frac{1 + \rho \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}{1 - \rho \cdot e^{-j \cdot 2 \cdot \beta \cdot x}}$$

Soient P l'image de z(x), A le point d'abscisse 1 sur l'axe réel, B le point d'abscisse (-1) sur le même axe dans le plan complexe.

Soit E le point de l'axe réel d'abscisse
$$\frac{1-\rho}{1+\rho}$$
 et soit F le point de l'axe réel d'abscisse $\frac{1+\rho}{1-\rho}$

Soit M un point variable sur l'axe imaginaire et © le cercle de centre M passant par A et B. Comment doit varier l'ordonnée de M en fonction de x pour que P soit l'intersection de © et du cercle de diamètre EF ? Tracer, sur un même graphique, les figures correspondant à

$$x = \frac{\pi}{10} , x = \frac{\pi}{8} , x = \frac{\pi}{6} .$$